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Introduction 

There is a continuing interest in the difluoramino group, -NF2, as a potentially important 

substituent in energetic systems, particularly propellants [1-6]. As is discussed elsewhere, 

replacing some -NO2 groups by -NF2 can increase the number of moles of gaseous combustion 

products formed per gram of material [5,7], thereby enhancing propellant performance [5,8]. A 

number of mixed nitro/difluoramino derivatives have been synthesized [2, 3, 9], including 

compounds in which the two groups are on the same carbon, gem-nitro/difluoramines [10]. 

A source of concern when a difluoramine contains an alpha hydrogen is instability with 

respect to loss of HF [11, 12]: 

H   F 

R2C—N—F      >■      R2C=N—F  +   HF t1) 

An analogous possibility exists in the case of hypofluorites [13-15], in which fluorine is also 

bonded to a highly electronegative atom, in this case oxygen: 

H    F 

R2C—O        >-      R2C=0 +   HF (2) 

Indeed reaction (2) is apparently more likely than (1), which requires a catalyst [11, 12]. However 

H3C-OF has been isolated and characterized [13-15], and its unimolecular decomposition to 

H2C=0 and HF has been subjected to a detailed computational analysis [16]. The two most 

favorable (and possibly competing) pathways were found to be (a) a single-step HF elimination 

through a four-centered transition state, and (b) a two-step process involving an initial, and rate- 

determining, cleavage of the O-F bond. While the overall reaction, 

H3C—OF    >■    H2C=0  +   HF (3) 

was predicted to have a strong thermodynamic driving force, AE = -73.9 kcal/mole at the 

correlated ab initio G2 level [16], the relatively high free energies of activation (>36 kcal/mole at 

300 K) obtained for both of the pathways described above indicate an unexpected level of kinetic 

stability for H3C-OF, as has indeed been observed [13]. 

Our present objective is to examine various aspects of the elimination of HF from H3C- 

NF2, and how this is affected by the presence of NO2 on the same carbon. In order to have a more 

complete picture of the factors influencing the stabilities of difluoramines and gem- 

nitro/difluoramines, our analysis also includes molecules in which there is no alpha hydrogen, i.e. 

(H3Q3C-NF2 and (H3C)2C(N02)NF2. 



Methods 

Optimized geometries, energies, vibrational frequencies and entropies for all systems of 

interest were computed with the GAUSSIAN 94 program [17]. A nonlocal density functional 

procedure was used, involving the Becke exchange [18] and Lee, Yang and Parr correlation [19] 

functionals, and a 6-3 IG** basis set. The calculated vibrational frequencies provided verification 

that all computed geometries correspond either to true energy minima or to transition states, as 

desired [20]. All energetic data to be given in this paper include zero-point corrections. 

Results and Discussion 

Reaction energetics 

The loss of HF from either H3C-NF2 or H2C(N02)NF2 is found to be thermodynamically 

favored: 

H3C—NF2    >-     H2C=NF    +     HF (4) 

AE(OK) = -20.1 kcal/mole 

AG (298.15 K) = -28.9 kcal/mole 

N02 N02 

H2C—NF2    >■      HC=NF    +    HF (5) 

AE (0 K) = -19.4 kcal/mole 

AG (298.15 K) = -28.2 kcal/mole 

As pointed out earlier, the ab initio G2 AE for the elimination of HF from H3C-OF is much larger 

in magnitude, -73.9 kcal/mole [16]. 

Guided by the results of the H3C-OF study, we have examined two possible 

decomposition mechanisms for H3C-NF2 and H2C(NÜ2)NF2; the first is one in which they pass 

through a four-centered transition state and then proceed to lose HF, eqs. (6) and (7), 

H--F 
1 1 

H3C-NF2    >■   H2C-NF   ►  H2C=NF + HF (6) 

AE* (0 K) = 38.0 kcal/mole 

AG* (298.15 K) = 37.9 kcaymole 



H--F 
i i 

H2C-NF2    >•    HC-NF    ►    HC=NF + HF (?) 
I I I 

N02 N02 N02 

AE* (0 K) = 35.2 kcal/mole 

AG* (298.15 K) = 35.7 kcal/mole 

while the second begins with the homolytic cleavage of an N-F bond, eqs. (8) and (9). 

H3C—NF2    >■   H3C—NF+ F (8) 

AE(OK) = 69.3 kcal/mole 

AG (298.15 K) = 60.6 kcal/mole 

H2C-NF2    >-  H2C-NF + F (9) 

N02 N02 

AE(OK) = 65.7 kcal/mole 

AG (298.15 K) = 56.4 kcal/mole 

It is clear that breaking an N-F bond requires more energy, or free energy, than formation 

of the four-centered transition state; thus the latter is the favored pathway for elimination of HF 

from either H3C-NF2 or H2C(N02)NF2- This conclusion is in contrast to that reached for H3C- 

OF [16], in which case the two pathways are competitive in terms of their free energy 

requirements. The calculated free energies of activation for forming the four-centered transition 

states are actually quite similar for all three molecules, between 35 and 39 kcal/mole; however the 

computed O-F bond dissociation energy is considerably less (45.9 kcal/mole [16]) than the N-F in 

either H3C-NF2 or H2C(N02)NF2, and the inclusion of TAS makes O-F bond-breaking a viable 

alternative to formation of the transition state. Our values for the N-F dissociation energies, 69.3 

and 65.7 kcal/mole, are in very good agreement with other calculated and relevant experimental 

data [10, 21]. 

While the presence of the strongly electron-withdrawing -NO2 group might be expected to 

significantly affect the energetics of processes related to the elimination of HF, we find only a 

relatively small lowering (<4 kcal/mole) of the energy requirements for either the four-centered 

transition state or cleavage of an N-F bond. We also examined the consequences of eliminating all 



alpha hydrogens and introducing a carbon chain. The N-F dissociation energy is found to increase 

slightly (< 2 kcal/mole), eqs. (10) and (11): 

(H3C)3C—NF2  >■   (H3C)3C—NF + F (10) 

AE(OK) = 71.2 kcal/mole 

(H3C)2C-NF2  >-  (H3C)2C-NF + F (H) 

N02 N02 

AE (0 K) = 66.8 kcal/mole 

Substituent interactions 

It is known that two functional groups attached to the same atom can have either a 

stabilizing or destabilizing interaction, the so-called "geminal effect" [20, 22]. If both groups are 

overall electron-withdrawing, as are -NO2 [23] and -NF2 [7, 24], then destabilization is 

anticipated [22]. A commonly used procedure for quantifying this is by means of an appropriate 

isodesmic reaction [20]. This is a hypothetical chemical process in which the number of bonds of 

each formal type remains the same but their mutual relationships are changed. The value of AE for 

such a reaction reveals any deviations from bond energy additivity, and is interpreted as reflecting 

any special energetic effects. Thus, the positive AE that we obtain for eq. (12) confirms that the 

interaction between -NO2 and -NF2, when substituted on the same carbon, is indeed destabilizing: 

N02 

H3C—N02   +   H3C—NF2     >■   H2C—NF2 +    CH4 (12) 

AE(0K) = 3.5 kcal 

However this is countered by the presence of methyl groups: 

N02 N02 

(H3C)2CH    +  H3C—NF2     >•   (H3C)2C—NF2    +   CH4 (13) 

AE(0K) = -1.2 kcal 

NF2 NF2 

(H3C)2CH    +  H3C— N02    >-   (H3C)2C—N02   +   CH4 (14) 



AE(OK) = -1.7 kcal 

N02 N02 

H3C—CH-NF2   +   C2H6   >•   (H3C)2C-NF2    +   CH4 (15) 

AE (0 K) = -6.8 kcal 

Stabilization is also observed for just the methyl/difluoramino combination: 

NF2 
I 

(H3C)2CH    +   C2H6     ►     (H3C)3C-NF2  +   CH4 (16) 

AE(OK) = -4.1 kcal 

(H3C)3CH    +   H3C—NF2     >-    (H3C)3C—NF2   +    CH4 (17) 

AE(OK) = -9.1 kcal 

It was pointed out above that the nitro group slightly lowers the energy requirement for 

N-F bond cleavage, while the methyl does the opposite. It seems reasonable to suggest that these 

effects may reflect the destabilizing interaction between geminal difluoramino and nitro groups, and 

the stabilizing influence of the methyl. 

Conclusions 

The major points to come out of this work are the following: 

(1) The loss of HF from H3C-NF2 is believed to proceed through a four-centered transition 

state, not via initial rupture of an N-F bond. The activation barrier is relatively high, about 

38 kcal/mole. This provides a degree of kinetic stability, even though the elimination of HF 

is thermodynamically favored: AG (298.15 K) = -29 kcal/mole. 

(2) The above conclusions are only slightly affected by the additional presence of the nitro group 

on the substituted carbon, H2C(N02)NF2- The activation barrier is reduced by less than 3 

kcal/mole, and the overall AG (298.15 K) is -28 kcal/mole. There is also little change in the 

N-F dissociation energy, AE (0 K), which decreases from 69 kcal/mole for H3C-NF2 to 66 

kcal/mole for H2C(N02)NF2." 



(3) When all alpha hydrogens are replaced by methyl groups, these N-F dissociation energies 

increase very slightly (< 2 kcal/mole). 

(4) There is a weakly destabilizing interaction between -NF2 and -NO2 when on the same 

carbon, and a weakly stabilizing one between -NF2 and -CH3. These help to explain the 

effects, noted above, of nitro and methyl substituents. 
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